Learning to Adapt in Dialogue Systems: Data-driven Models for Personality Recognition and Generation

نویسندگان

  • François Mairesse
  • Rob Gaizauskas
چکیده

Dialogue systems are artefacts that converse with human users in order to achieve some task. Each step of the dialogue requires understanding the user’s input, deciding on what to reply, and generating an output utterance. Although there are many ways to express any given content, most dialogue systems do not take linguistic variation into account in both the understanding and generation phases, i.e. the user’s linguistic style is typically ignored, and the style conveyed by the system is chosen once for all interactions at development time. We believe that modelling linguistic variation can greatly improve the interaction in dialogue systems, such as in intelligent tutoring systems, video games, or information retrieval systems, which all require specific linguistic styles. Previous work has shown that linguistic style affects many aspects of users’ perceptions, even when the dialogue is task-oriented. Moreover, users attribute a consistent personality to machines, even when exposed to a limited set of cues, thus dialogue systems manifest personality whether designed into the system or not. Over the past few years, psychologists have identified the main dimensions of individual differences in human behaviour: the Big Five personality traits. We hypothesise that the Big Five provide a useful computational framework for modelling important aspects of linguistic variation. This thesis first explores the possibility of recognising the user’s personality using data-driven models trained on essays and conversational data. We then test whether it is possible to generate language varying consistently along each personality dimension in the information presentation domain. We present PERSONAGE: a language generator modelling findings from psychological studies to project various personality traits. We use PERSONAGE to compare various generation paradigms: (1) rule-based generation, (2) overgenerate and select and (3) generation using parameter estimation models—a novel approach that learns to produce recognisable variation along meaningful stylistic dimensions without the computational cost incurred by overgeneration techniques. We also present the first human evaluation of a data-driven generation method that projects multiple stylistic dimensions simultaneously and on a continuous scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Adapt to Unknown Users: Referring Expression Generation in Spoken Dialogue Systems

We present a data-driven approach to learn user-adaptive referring expression generation (REG) policies for spoken dialogue systems. Referring expressions can be difficult to understand in technical domains where users may not know the technical ‘jargon’ names of the domain entities. In such cases, dialogue systems must be able to model the user’s (lexical) domain knowledge and use appropriate ...

متن کامل

Adaptive Referring Expression Generation in Spoken Dialogue Systems: Evaluation with Real Users

We present new results from a real-user evaluation of a data-driven approach to learning user-adaptive referring expression generation (REG) policies for spoken dialogue systems. Referring expressions can be difficult to understand in technical domains where users may not know the technical ‘jargon’ names of the domain entities. In such cases, dialogue systems must be able to model the user’s (...

متن کامل

Learning to personalize spoken generation for dialogue systems

One of the most robust findings of studies of human-human dialogue is that people adapt their utterances to their conversational partners. However, spoken language generators are limited in their ability to adapt to individual users. While statistical models of language generation have the potential for individual adaptation, we know of no experiments showing this. In this paper, we utilize one...

متن کامل

Improving the speech recognition performance of beginners in spoken conversational interaction for language learning

The provision of automatic systems that can provide conversational practice for beginners would make a valuable addition to existing aids for foreign language teaching. To achieve this goal, the SCILL (Spoken Conversational Interaction for Language Learning) project is developing a spoken dialogue system that is capable of maintaining interactive dialogues with non-native students in the target...

متن کامل

Reinforcement Learning for Adaptive Dialogue Systems - A Data-driven Methodology for Dialogue Management and Natural Language Generation

The past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation. Features 7 A new methodology for developing spoken dialogue systems is described in detail 7 A research guide for students and researchers 7 This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008